Anti-money laundering: managing regulatory risks

Anti-money laundering: managing regulatory risks

Banking

Big Data platform improves global AML compliance

A multinational bank leverages big data platform to improve Anti Money Laundering (AML) compliance and prevents global clients and franchises from financial crimes.

Client

A leading global bank with operations in over 100 countries

Goal

Address data quality and cost challenges of legacy AML application infrastructure

Tools and technologies

Hadoop, Hive, Talend, Kafka, Spark, ETL

BUSINESS CHALLENGE

The client’s legacy AML application infrastructure was leading to data acquisition, quality assurance, data processing, AML rules management and reporting challenges. High data volume and rules-based algorithms were generating high numbers of false positives. Multiple instances of legacy vendor platforms were also adding to cost and complexity.

SOLUTION

Iris developed and implemented multiple AML Trade Surveillance applications and Big Data capabilities. The team designed a centralized data hub with Cloudera Hadoop for AML business processes and migrated application data to the big data analytical platform in the client’s private cloud. Switching from a rule-based approach to algorithmic analytical models, we incorporated a data lake with logical layers and developed a metadata-driven data quality monitoring solution. We enabled the support for AML model development, execution and testing/validation, and integration with case management. Our data experts also deployed a custom metadata management tool and UI to manage data quality. Data visualization and dashboards were implemented for alerts, monitoring performance, and tracking money laundering activities.

OUTCOMES

The implemented solution delivered tangible outcomes, including:

  • Centralized data hub capable of handling 100+ PB of data and ~5,000 users across 18 regional hubs for several countries
  • Ingestion of 30+ million transactions per day from different sources
  • Greater insights with scanning of 1.5+ Billion transactions every month
  • False positives reduced by over 30%
  • AML data storage cost reduced to <10 cents per GB per year
  • Extended support to multiple countries and business lines across six global regions; legacy instances reduced from 30+ to <10

Related Stories

Conversational assistant boosts AML product assurance

Gen AI-powered responses enhance the operational efficiency of the AML global product assurance team and reduce cost.

Learn more

Automated financial analysis reduces manual effort

Analysts in commercial lending and credit risk units are able to source intelligent information across multiple documents.  

Learn more

Test Automation Speeds Model Risk Management System

Automated testing for a top international bank’s model risk management system speeds efficiency and reliability

Learn more

Contact

Our experts can help you find the right solutions to meet your needs.

Get in touch
Copyright © 2024 Iris Software, Inc. All rights reserved